TABLE I: Full breakdown of the systematic uncertainties in bins of $m(t\bar{t})$. The term $\delta^{\rm WHF}$ refers to the uncertainty due to the $W+{\rm jets}$ heavy flavor scale factor, the term $\delta^{\rm jet}$ includes uncertainties due to jet energy scale, reconstruction and identification, the term $\delta^{\rm SPR}$ refers to the uncertainty due the single particle responce corrections, the term $\delta^{\rm MJ}$ refers to the one due to the multijet background estimation, the term $\delta^{\rm Sig.}$ refers to the signal model uncertainty, the term δ^{σ} includes uncertainties on the cross section of the $t\bar{t}$, single top quark and diboson processes, the term $\delta^{\rm Trig.}$ refers to the uncertainty due to trigger efficiencies, the term $\delta^{\rm Proc.}$ refers to the uncertainties due to the unfolding method. In addition there is a 6.1% normalization uncertainty, which is correlated accross all bins due to the uncertainty on the integrated luminosity.

Bin [TeV]	$\delta^{\rm WHF} [{\rm pb/TeV}]$	$\delta^{ m jet} [{ m pb/TeV}]$	$\delta^{\rm SPR}[{\rm pb/TeV}]$	$\delta^{\mathrm{PDF}}[\mathrm{pb}/\mathrm{TeV}]$	$\delta^{m_t} [{ m pb/TeV}]$	$\delta^{\rm MJ} [{\rm pb/TeV}]$	$\delta^{b-{ m ID}}[{ m pb}/{ m TeV}]$	$\delta^{ m Sig.}[m pb/TeV]$	$\delta^{p_T(t\bar{t})}[\mathrm{pb/TeV}]$	$\delta^\ell [{ m pb/TeV}]$	$\delta^{\sigma}[\mathrm{pb}/\mathrm{TeV}]$	$\delta^{\mathrm{Trig}\cdot[\mathrm{pb}/\mathrm{TeV}]}$	$\delta^{ ext{Proc.}}[ext{pb/TeV}]$
0.2400 - 0.4125	$+0.41 \\ -0.40$	$^{+1.57}_{-1.47}$	$^{+0.12}_{-0.12}$	$^{+0.07}_{-0.07}$	$+0.05 \\ -0.05$	+0.19 -0.13	$^{+1.11}_{-1.06}$	+3.04 -2.99	$^{+0.00}_{-0.00}$	$^{+0.10}_{-0.10}$	$^{+0.43}_{-0.44}$	$^{+1.24}_{-1.24}$	+0.01 -0.01
0.4125 - 0.5050	$^{+0.45}_{-0.45}$	$^{+0.47}_{-0.57}$	$^{+0.03}_{-0.03}$	$^{+0.04}_{-0.04}$	$^{+0.19}_{-0.19}$	$^{+0.03}_{-0.11}$	$^{+0.13}_{-0.13}$	$^{+0.22}_{-1.18}$	$^{+0.30}_{-0.31}$	$^{+0.14}_{-0.14}$	$^{+0.26}_{-0.26}$	$^{+1.66}_{-1.66}$	$^{+0.18}_{-0.18}$
0.5050 - 0.6150	+0.13 -0.13	$^{+0.56}_{-0.62}$	$^{+0.02}_{-0.02}$	$^{+0.04}_{-0.04}$	$^{+0.10}_{-0.10}$	$^{+0.01}_{-0.05}$	$^{+0.11}_{-0.11}$	$^{+0.44}_{-0.72}$	$^{+0.16}_{-0.16}$	$^{+0.03}_{-0.03}$	$^{+0.00}_{-0.00}$	$^{+0.23}_{-0.23}$	$^{+0.05}_{-0.05}$
0.6150 - 0.7500	$^{+0.04}_{-0.04}$	$^{+0.07}_{-0.07}$	$^{+0.06}_{-0.06}$	$^{+0.09}_{-0.08}$	$^{+0.09}_{-0.10}$	$^{+0.00}_{-0.02}$	$^{+0.00}_{-0.00}$	$^{+0.35}_{-0.58}$	$^{+0.06}_{-0.06}$	$^{+0.06}_{-0.06}$	$^{+0.17}_{-0.18}$	$^{+0.05}_{-0.05}$	$^{+0.06}_{-0.05}$
0.7500 - 0.1200	$^{+0.00}_{-0.00}$	$^{+0.02}_{-0.03}$	$^{+0.01}_{-0.00}$	$^{+0.01}_{-0.01}$	$^{+0.02}_{-0.01}$	$^{+0.00}_{-0.00}$	$^{+0.02}_{-0.03}$	$^{+0.04}_{-0.01}$	$^{+0.03}_{-0.03}$	$^{+0.01}_{-0.01}$	$^{+0.03}_{-0.02}$	$^{+0.00}_{-0.00}$	$^{+0.00}_{-0.00}$

TABLE II: Full breakdown of the systematic uncertainties in bins of $|y^{\text{top}}|$. The term δ^{WHF} refers to the uncertainty due to the W+jets heavy flavor scale factor, the term δ^{jet} includes uncertainties due to jet energy scale, reconstruction and identification, the term δ^{SPR} refers to the uncertainty due the single particle responce corrections, the term δ^{MJ} refers to the one due to the multijet background estimation, the term $\delta^{\text{Sig.}}$ refers to the signal model uncertainty, the term δ^{σ} includes uncertainties on the cross section of the $t\bar{t}$, single top quark and diboson processes, the term $\delta^{\text{Trig.}}$ refers to the uncertainty due to trigger efficiencies, the term $\delta^{\text{Proc.}}$ refers to the uncertainties due to the unfolding method. In addition there is a 6.1% normalization uncertainty, which is correlated accross all bins due to the uncertainty on the integrated luminosity.

Bin	$\delta^{\mathrm{WHF}}[\mathrm{pb}]$	$\delta^{ m jet}\left[m pb ight]$	$\delta^{\mathrm{SPR}}[\mathrm{pb}]$	$\delta^{\mathrm{PDF}}[\mathrm{pb}]$	$\delta^{m_t}[pb]$	$\delta^{\mathrm{MJ}}[\mathrm{pb}]$	$\delta^{b-{ m ID}}[{ m pb}]$	$\delta^{\mathrm{Sig.}}[\mathrm{pb}]$	$\delta^{p_T(t\bar{t})}[\mathrm{pb}]$	$\delta^{\ell}[pb]$	$\delta^{\sigma}[pb]$	$\delta^{\mathrm{Trig.}}[\mathrm{pb}]$	$\delta^{ ext{Proc.}}[ext{pb}]$
0.00 - 0.25	$^{+0.13}_{-0.13}$	$^{+0.38}_{-0.50}$	$^{+0.22}_{-0.23}$	$^{+0.02}_{-0.02}$	$+0.02 \\ -0.02$	$+0.04 \\ -0.05$	$^{+0.04}_{-0.06}$	$^{+0.15}_{-0.77}$	$^{+0.03}_{-0.03}$	$^{+0.02}_{-0.02}$	+0.10 -0.10	$^{+0.22}_{-0.22}$	$^{+0.01}_{-0.02}$
0.25 - 0.50	$^{+0.14}_{-0.14}$	$^{+0.40}_{-0.60}$	$^{+0.04}_{-0.04}$	$^{+0.02}_{-0.02}$	$^{+0.03}_{-0.03}$	$^{+0.03}_{-0.04}$	$^{+0.04}_{-0.04}$	$^{+0.49}_{-0.54}$	$^{+0.02}_{-0.02}$	$^{+0.03}_{-0.03}$	$^{+0.11}_{-0.11}$	$^{+0.25}_{-0.25}$	$^{+0.03}_{-0.05}$
0.50 - 0.75	$^{+0.12}_{-0.12}$	$^{+0.02}_{-0.08}$	$^{+0.06}_{-0.06}$	$^{+0.03}_{-0.03}$	$^{+0.04}_{-0.04}$	$^{+0.03}_{-0.04}$	$^{+0.04}_{-0.05}$	$^{+0.11}_{-0.10}$	$^{+0.00}_{-0.00}$	$^{+0.01}_{-0.01}$	$^{+0.10}_{-0.10}$	$^{+0.11}_{-0.11}$	$^{+0.01}_{-0.01}$
0.75 - 1.00	$^{+0.10}_{-0.10}$	$^{+0.20}_{-0.22}$	$^{+0.12}_{-0.11}$	$^{+0.02}_{-0.02}$	$^{+0.01}_{-0.01}$	$^{+0.02}_{-0.03}$	$^{+0.02}_{-0.02}$	$^{+0.18}_{-0.30}$	$^{+0.01}_{-0.01}$	$^{+0.02}_{-0.02}$	$^{+0.09}_{-0.09}$	$^{+0.12}_{-0.12}$	$^{+0.00}_{-0.00}$
1.00 - 1.25	$^{+0.07}_{-0.07}$	$^{+0.43}_{-0.48}$	$^{+0.28}_{-0.24}$	$^{+0.05}_{-0.06}$	$^{+0.05}_{-0.05}$	$^{+0.00}_{-0.01}$	$^{+0.06}_{-0.07}$	$^{+0.03}_{-0.03}$	$^{+0.06}_{-0.06}$	$^{+0.02}_{-0.02}$	$^{+0.01}_{-0.01}$	$^{+0.18}_{-0.18}$	$^{+0.01}_{-0.01}$
1.25 - 1.50	$^{+0.05}_{-0.06}$	$^{+0.14}_{-0.15}$	$^{+0.13}_{-0.15}$	$^{+0.08}_{-0.07}$	$^{+0.07}_{-0.05}$	$^{+0.00}_{-0.01}$	$^{+0.10}_{-0.09}$	$^{+0.10}_{-0.12}$	$^{+0.05}_{-0.03}$	$^{+0.05}_{-0.05}$	$^{+0.03}_{-0.05}$	$^{+0.04}_{-0.04}$	$^{+0.00}_{-0.01}$

TABLE III: Full breakdown of the systematic uncertainties in bins of p_T^{top} . The term δ^{WHF} refers to the uncertainty due to the W+jets heavy flavor scale factor, the term δ^{jet} includes uncertainties due to jet energy scale, reconstruction and identification, the term δ^{SPR} refers to the uncertainty due the single particle responce corrections, the term δ^{MJ} refers to the one due to the multijet background estimation, the term $\delta^{\text{Sig.}}$ refers to the signal model uncertainty, the term δ^{σ} includes uncertainties on the cross section of the $t\bar{t}$, single top quark and diboson processes, the term $\delta^{\text{Trig.}}$ refers to the uncertainty due to trigger efficiencies, the term $\delta^{\text{Proc.}}$ refers to the uncertainties due to the unfolding method. In addition there is a 6.1% normalization uncertainty, which is correlated accross all bins due to the uncertainty on the integrated luminosity.

Bin [TeV]	$\delta^{\mathrm{WHF}}[\mathrm{pb}/\mathrm{TeV}]$	$\delta^{ m jet} [{ m pb/TeV}]$	$\delta^{\rm SPR}_{\rm [pb/TeV]}$	$\delta^{\rm PDF}[{\rm pb/TeV}]$	$\delta^{m_t}[\mathrm{pb/TeV}]$	$\delta^{\rm MJ}[{\rm pb/TeV}]$	$\delta^{b-{ m ID}}[{ m pb/TeV}]$	$\delta^{\mathrm{Sig.}}[\mathrm{pb}/\mathrm{TeV}]$	$\delta^{p}T^{(t\bar{t})}[\text{pb/TeV}]$	$\delta^{\ell}[\mathrm{pb}/\mathrm{TeV}]$	$\delta^{\sigma}[pb/TeV]$	$\delta^{\mathrm{Trig.}}[\mathrm{pb}/\mathrm{TeV}]$	$\delta^{ m Proc.} [{ m pb/TeV}]$
0.000 - 0.045	$^{+1.04}_{-1.01}$	$^{+0.90}_{-0.88}$	$^{+0.47}_{-0.39}$	$^{+0.18}_{-0.18}$	$^{+0.91}_{-0.99}$	+0.30 -0.21	$^{+0.22}_{-0.22}$	$^{+1.91}_{-3.36}$	$^{+0.36}_{-0.36}$	+0.13 -0.13	+0.85 -1.10	$^{+1.67}_{-1.67}$	$^{+0.22}_{-0.19}$
0.045 - 0.090	$^{+0.65}_{-0.63}$	$^{+0.47}_{-0.67}$	$^{+0.40}_{-0.43}$	$^{+0.14}_{-0.14}$	$^{+0.23}_{-0.22}$	$^{+0.26}_{-0.15}$	$^{+0.27}_{-0.26}$	$^{+0.47}_{-2.30}$	$^{+0.41}_{-0.42}$	$^{+0.18}_{-0.18}$	$^{+0.46}_{-0.47}$	$^{+1.25}_{-1.25}$	$^{+0.02}_{-0.08}$
0.090 - 0.140	$^{+0.57}_{-0.56}$	$^{+0.98}_{-1.10}$	$^{+0.57}_{-0.70}$	$^{+0.02}_{-0.02}$	$^{+0.85}_{-0.90}$	$^{+0.07}_{-0.13}$	$^{+0.30}_{-0.31}$	$^{+2.30}_{-2.75}$	$^{+0.30}_{-0.30}$	$^{+0.04}_{-0.04}$	$^{+0.21}_{-0.21}$	$^{+1.04}_{-1.04}$	$^{+0.13}_{-0.11}$
0.140 - 0.200	$^{+0.18}_{-0.18}$	$^{+0.22}_{-0.45}$	$^{+0.30}_{-0.25}$	$^{+0.02}_{-0.02}$	$^{+0.32}_{-0.33}$	$^{+0.01}_{-0.08}$	$^{+0.05}_{-0.05}$	$^{+0.90}_{-1.01}$	$^{+0.26}_{-0.26}$	$^{+0.00}_{-0.00}$	$^{+0.19}_{-0.19}$	$^{+0.57}_{-0.57}$	$^{+0.04}_{-0.06}$
0.200 - 0.300	$^{+0.03}_{-0.03}$	$^{+0.10}_{-0.14}$	$^{+0.11}_{-0.08}$	$^{+0.02}_{-0.02}$	$^{+0.05}_{-0.05}$	$^{+0.00}_{-0.02}$	$^{+0.03}_{-0.03}$	$^{+0.33}_{-0.27}$	$^{+0.09}_{-0.08}$	$^{+0.01}_{-0.01}$	$^{+0.03}_{-0.03}$	$^{+0.10}_{-0.10}$	$^{+0.00}_{-0.03}$
0.300 - 0.400	$^{+0.00}_{-0.00}$	$^{+0.06}_{-0.08}$	$^{+0.00}_{-0.00}$	$^{+0.01}_{-0.01}$	$^{+0.01}_{-0.01}$	$^{+0.00}_{-0.00}$	$^{+0.02}_{-0.02}$	$^{+0.01}_{-0.01}$	$^{+0.02}_{-0.02}$	$^{+0.01}_{-0.01}$	$^{+0.01}_{-0.01}$	$^{+0.01}_{-0.01}$	$^{+0.00}_{-0.00}$